openlayer4加载echart3的地理位置scatter图-全国主要城市空气质量
在github上下载了ol3-Echarts-master,原数据是加载echart的迁徙图,我对作者的类进行了改造,编写了一个类EchartLayer,加载饼图。代码如下:
说明:没有用到偏移量的计算,拖拽、缩放的时候,每次保存原数据(深度克隆),重新计算地理位置所对应的屏幕位置
/** * echarts 百度地图扩展,必须在echarts初始化前使用 * * @desc echarts基于Canvas,纯Javascript图表库,提供直观,生动,可交互,可个性化定制的数据统计图表。 */ //**************js深度克隆*****************// function deepClone(obj){ var result; var oClass=isClass(obj); if(oClass==="Object"){ result={}; }else if(oClass==="Array"){ result=[]; }else{ return obj; } for(var key in obj){ var copy=obj[key]; if(isClass(copy)=="Object"){ result[key]=arguments.callee(copy);//递归调用 }else if(isClass(copy)=="Array"){ result[key]=arguments.callee(copy); }else{ result[key]=obj[key]; } } return result; } //判断对象的数据类型 function isClass(o){ if(o===null) return "Null"; if(o===undefined) return "Undefined"; return Object.prototype.toString.call(o).slice(8,-1); } /** * 构造函数 * * @param {String|HTMLElement|ol.Map} obj * @param {echarts} ec * @constructor */ function EchartLayer(map,ec) { this._map=map; var size = map.getSize(); var div = this._echartsContainer = document.createElement('div'); div.style.position = 'absolute'; div.style.height = size[1] + 'px'; div.style.width = size[0] + 'px'; div.style.top = 0; div.style.left = 0; map.getViewport().appendChild(div); this._init(map,ec); }; /** * echarts 容器元素 * * @type {HTMLElement} * @private */ EchartLayer.prototype._echartsContainer = null; /** * ol地图实例 * * @type {BMap.Map} * @private */ EchartLayer.prototype._map = null; /** * 使用的echarts实例 * * @type {ECharts} * @private */ EchartLayer.prototype._ec = null; /** * geoCoord * * @type {Object} * @private */ EchartLayer.prototype._geoCoord = []; /** * 记录地图的便宜量 * * @type {Array.<number>} * @private */ EchartLayer.prototype._mapOffset = [0, 0]; /** * 初始化方法 * * @param {String|HTMLElement|ol.Map} obj * @param {BMap} BMap * @param {echarts} ec * @private */ EchartLayer.prototype._init = function (map,ec) { var self = this; self._map = map; /** * 获取echarts容器 * * @return {HTMLElement} * @public */ self.getEchartsContainer = function () { return self._echartsContainer; }; /** * 获取map实例 * * @return {BMap.Map} * @public */ self.getMap = function () { return self._map; } /** * 经纬度转换为屏幕像素 * * @param {Array.<number>} geoCoord 经纬度 * @return {Array.<number>} * @public */ self.geoCoord2Pixel = function (geoCoord) { return self._map.getPixelFromCoordinate(ol.proj.fromLonLat(geoCoord)); }; /** * 屏幕像素转换为经纬度 * * @param {Array.<number>} pixel 像素坐标 * @return {Array.<number>} * @public */ self.pixel2GeoCoord = function (pixel) { return self._map.getCoordinateFromPixel(pixel); }; /** * 初始化echarts实例 * * @return {ECharts} * @public */ self.initECharts = function () { self._ec = ec.init.apply(self, arguments); self._bindEvent(); self._addMarkWrap(); return self._ec; }; // addMark wrap for get position from baidu map by geo location // by kener at 2015.01.08 self._addMarkWrap = function () { function _addMark(seriesIdx, markData, markType) { if (markType == 'markPoint') { var data = markData.data; if (data && data.length) { for (var k = 0, len = data.length; k < len; k++) { self._AddPos(data[k]); } } } else { data = markData.data; if (data && data.length) { for (var k = 0, len = data.length; k < len; k++) { self._AddPos(data[k][0]); self._AddPos(data[k][1]); } } } self._ec._addMarkOri(seriesIdx, markData, markType); } self._ec._addMarkOri = self._ec._addMark; self._ec._addMark = _addMark; }; /** * 获取ECharts实例 * * @return {ECharts} * @public */ self.getECharts = function () { return self._ec; }; /** * 获取地图的偏移量 * * @return {Array.<number>} * @public */ self.getMapOffset = function () { return self._mapOffset; }; /** * 对echarts的setOption加一次处理 * 用来为markPoint、markLine中添加x、y坐标,需要name与geoCoord对应 * * @param {Object} * @public */ self.setOption = function (option, notMerge) { if(!option){ return; } self._option = deepClone(option); var series = option.series || {}; //data的数据类型[{name:"北京","value":[x,y,value]}], //将x,y转为屏幕坐标 // var coordinates=option.series[0].data || option.series || {}; for(var i=0;i<series.length;i++){ var iseries=series[i]; var tempdata=iseries.data; var resultdata=[]; if(tempdata){ for(var j=0;j<tempdata.length;j++){ var latlon=tempdata[j].value.slice(0,2); var pixelcoordinates=self.geoCoord2Pixel(latlon); var value=tempdata[j].value[2]; var resultValue=pixelcoordinates.push(value); var item={"name":tempdata[j].name,"value":pixelcoordinates}; resultdata.push(item); } series[i].data=resultdata; } } // 记录所有的geoCoord /* for (var i = 0, item; item = coordinates[i++];) { var geoCoord = item.geoCoord || item.value.slice(0,2); console.log(geoCoord); if (geoCoord) { self._geoCoord[item.name] = geoCoord; } } // 添加x、y for (var i = 0, item; item = series[i++];) { var markPoint = item.markPoint || {}; var markLine = item.markLine || {}; var data = markPoint.data; if (data && data.length) { for (var k = 0, len = data.length; k < len; k++) { self._AddPos(data[k]); } } data = markLine.data; if (data && data.length) { for (var k = 0, len = data.length; k < len; k++) { self._AddPos(data[k][0]); self._AddPos(data[k][1]); } } }*/ //data option.series=series; self._ec.setOption(option, notMerge); }; /** * 增加x、y坐标 * * @param {Object} obj markPoint、markLine data中的项,必须有name * @param {Object} geoCoord */ self._AddPos = function (obj) { var coord = this._geoCoord[obj.name]; var pos = this.geoCoord2Pixel(coord); obj.x = pos[0] ;//- self._mapOffset[0]; obj.y = pos[1] ;//- self._mapOffset[1]; }; /** * 绑定地图事件的处理方法 * * @private */ self._bindEvent = function () { //self._map.getView().on('change:resolution', _zoomChangeHandler('zoom')); /* self._map.getView().on('change:center', _moveHandler('moving')); self._map.on('moveend', _moveHandler('moveend')); self._ec.getZr().on('dragstart', _dragZrenderHandler(true)); self._ec.getZr().on('dragend', _dragZrenderHandler(false));*/ self._map.getView().on('change:resolution', function (e) { self.setOption(self._option); }); self._map.on('moveend', function (e) { self._echartsContainer.style.display='block'; self.setOption(self._option); }); self._map.on('movestart', function (e) { self._echartsContainer.style.display='none'; }); } /** * 地图缩放触发事件 * * @private */ function _zoomChangeHandler(type) { _fireEvent(type); } /** * 地图移动、如拖拽触发事件 * * @param {string} type moving | moveend 移动中|移动结束 * @return {Function} * @private */ function _moveHandler(type) { return function (e) { // 记录偏移量 var offsetEle = self._echartsContainer.parentNode.parentNode.parentNode; self._mapOffset = [ -parseInt(offsetEle.style.left) || 0, -parseInt(offsetEle.style.top) || 0 ]; self._echartsContainer.style.left = self._mapOffset[0] + 'px'; self._echartsContainer.style.top = self._mapOffset[1] + 'px'; _fireEvent(type); } } /** * Zrender拖拽触发事件 * * @param {boolean} isStart * @return {Function} * @private */ function _dragZrenderHandler(isStart) { return function () { self._map.dragging = isStart; } } /** * 触发事件 * * @param {stirng} type 事件类型 * @private */ function _fireEvent(type) { var func = self['on' + type]; if (func) { func(); } else { self.refresh(); } } /** * 刷新页面 * * @public */ self.refresh = function () { if (self._ec) { var option = self._ec.getOption(); var component = self._ec.component || {}; var legend = component.legend; var dataRange = component.dataRange; if (legend) { option.legend.selected = legend.getSelectedMap(); } if (dataRange) { option.dataRange.range = dataRange._range; } self._ec.clear(); self.setOption(option); } }; return EchartLayer; }
调用示例:
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>ol3-Echarts</title> <style> html, body, #map { height: 100%; padding: 0; margin: 0; background-color: #0f0f0f; } </style> <link rel="stylesheet" href="plugin/ol3/ol.css" type="text/css"> </head> <body> <div id="map"> </div> <script src="plugin/ol3/ol.js"></script> <script src="js/main.js"></script> <script src="plugin/jquery-2.1.1.min.js"></script> <script src="plugin/echarts.min-3.2.3.js"></script> <script src="js/EchartLayer.js"></script> <script> $(document).ready(function () { var map = new ol.Map({ target: 'map', controls: [], layers: [ new ol.layer.Tile({ source: new ol.source.OSM() }) /* new ol.layer.Vector({ source:new ol.source.Vector({ url:'china_line.json', format:new ol.format.GeoJSON() }) }), new ol.layer.Vector({ source:new ol.source.Vector({ url:'china.geojson', format:new ol.format.GeoJSON() }) })*/ ], view: new ol.View({ center: [0, 0], zoom: 2 }) }) var data = [ {name: '海门', value: 9}, {name: '鄂尔多斯', value: 12}, {name: '招远', value: 12}, {name: '舟山', value: 12}, {name: '齐齐哈尔', value: 14}, {name: '盐城', value: 15}, {name: '赤峰', value: 16}, {name: '青岛', value: 18}, {name: '乳山', value: 18}, {name: '金昌', value: 19}, {name: '泉州', value: 21}, {name: '莱西', value: 21}, {name: '日照', value: 21}, {name: '胶南', value: 22}, {name: '南通', value: 23}, {name: '拉萨', value: 24}, {name: '云浮', value: 24}, {name: '梅州', value: 25}, {name: '文登', value: 25}, {name: '上海', value: 25}, {name: '攀枝花', value: 25}, {name: '威海', value: 25}, {name: '承德', value: 25}, {name: '厦门', value: 26}, {name: '汕尾', value: 26}, {name: '潮州', value: 26}, {name: '丹东', value: 27}, {name: '太仓', value: 27}, {name: '曲靖', value: 27}, {name: '烟台', value: 28}, {name: '福州', value: 29}, {name: '瓦房店', value: 30}, {name: '即墨', value: 30}, {name: '抚顺', value: 31}, {name: '玉溪', value: 31}, {name: '张家口', value: 31}, {name: '阳泉', value: 31}, {name: '莱州', value: 32}, {name: '湖州', value: 32}, {name: '汕头', value: 32}, {name: '昆山', value: 33}, {name: '宁波', value: 33}, {name: '湛江', value: 33}, {name: '揭阳', value: 34}, {name: '荣成', value: 34}, {name: '连云港', value: 35}, {name: '葫芦岛', value: 35}, {name: '常熟', value: 36}, {name: '东莞', value: 36}, {name: '河源', value: 36}, {name: '淮安', value: 36}, {name: '泰州', value: 36}, {name: '南宁', value: 37}, {name: '营口', value: 37}, {name: '惠州', value: 37}, {name: '江阴', value: 37}, {name: '蓬莱', value: 37}, {name: '韶关', value: 38}, {name: '嘉峪关', value: 38}, {name: '广州', value: 38}, {name: '延安', value: 38}, {name: '太原', value: 39}, {name: '清远', value: 39}, {name: '中山', value: 39}, {name: '昆明', value: 39}, {name: '寿光', value: 40}, {name: '盘锦', value: 40}, {name: '长治', value: 41}, {name: '深圳', value: 41}, {name: '珠海', value: 42}, {name: '宿迁', value: 43}, {name: '咸阳', value: 43}, {name: '铜川', value: 44}, {name: '平度', value: 44}, {name: '佛山', value: 44}, {name: '海口', value: 44}, {name: '江门', value: 45}, {name: '章丘', value: 45}, {name: '肇庆', value: 46}, {name: '大连', value: 47}, {name: '临汾', value: 47}, {name: '吴江', value: 47}, {name: '石嘴山', value: 49}, {name: '沈阳', value: 50}, {name: '苏州', value: 50}, {name: '茂名', value: 50}, {name: '嘉兴', value: 51}, {name: '长春', value: 51}, {name: '胶州', value: 52}, {name: '银川', value: 52}, {name: '张家港', value: 52}, {name: '三门峡', value: 53}, {name: '锦州', value: 54}, {name: '南昌', value: 54}, {name: '柳州', value: 54}, {name: '三亚', value: 54}, {name: '自贡', value: 56}, {name: '吉林', value: 56}, {name: '阳江', value: 57}, {name: '泸州', value: 57}, {name: '西宁', value: 57}, {name: '宜宾', value: 58}, {name: '呼和浩特', value: 58}, {name: '成都', value: 58}, {name: '大同', value: 58}, {name: '镇江', value: 59}, {name: '桂林', value: 59}, {name: '张家界', value: 59}, {name: '宜兴', value: 59}, {name: '北海', value: 60}, {name: '西安', value: 61}, {name: '金坛', value: 62}, {name: '东营', value: 62}, {name: '牡丹江', value: 63}, {name: '遵义', value: 63}, {name: '绍兴', value: 63}, {name: '扬州', value: 64}, {name: '常州', value: 64}, {name: '潍坊', value: 65}, {name: '重庆', value: 66}, {name: '台州', value: 67}, {name: '南京', value: 67}, {name: '滨州', value: 70}, {name: '贵阳', value: 71}, {name: '无锡', value: 71}, {name: '本溪', value: 71}, {name: '克拉玛依', value: 72}, {name: '渭南', value: 72}, {name: '马鞍山', value: 72}, {name: '宝鸡', value: 72}, {name: '焦作', value: 75}, {name: '句容', value: 75}, {name: '北京', value: 79}, {name: '徐州', value: 79}, {name: '衡水', value: 80}, {name: '包头', value: 80}, {name: '绵阳', value: 80}, {name: '乌鲁木齐', value: 84}, {name: '枣庄', value: 84}, {name: '杭州', value: 84}, {name: '淄博', value: 85}, {name: '鞍山', value: 86}, {name: '溧阳', value: 86}, {name: '库尔勒', value: 86}, {name: '安阳', value: 90}, {name: '开封', value: 90}, {name: '济南', value: 92}, {name: '德阳', value: 93}, {name: '温州', value: 95}, {name: '九江', value: 96}, {name: '邯郸', value: 98}, {name: '临安', value: 99}, {name: '兰州', value: 99}, {name: '沧州', value: 100}, {name: '临沂', value: 103}, {name: '南充', value: 104}, {name: '天津', value: 105}, {name: '富阳', value: 106}, {name: '泰安', value: 112}, {name: '诸暨', value: 112}, {name: '郑州', value: 113}, {name: '哈尔滨', value: 114}, {name: '聊城', value: 116}, {name: '芜湖', value: 117}, {name: '唐山', value: 119}, {name: '平顶山', value: 119}, {name: '邢台', value: 119}, {name: '德州', value: 120}, {name: '济宁', value: 120}, {name: '荆州', value: 127}, {name: '宜昌', value: 130}, {name: '义乌', value: 132}, {name: '丽水', value: 133}, {name: '洛阳', value: 134}, {name: '秦皇岛', value: 136}, {name: '株洲', value: 143}, {name: '石家庄', value: 147}, {name: '莱芜', value: 148}, {name: '常德', value: 152}, {name: '保定', value: 153}, {name: '湘潭', value: 154}, {name: '金华', value: 157}, {name: '岳阳', value: 169}, {name: '长沙', value: 175}, {name: '衢州', value: 177}, {name: '廊坊', value: 193}, {name: '菏泽', value: 194}, {name: '合肥', value: 229}, {name: '武汉', value: 273}, {name: '大庆', value: 279} ]; var geoCoordMap = { '海门':[121.15,31.89], '鄂尔多斯':[109.781327,39.608266], '招远':[120.38,37.35], '舟山':[122.207216,29.985295], '齐齐哈尔':[123.97,47.33], '盐城':[120.13,33.38], '赤峰':[118.87,42.28], '青岛':[120.33,36.07], '乳山':[121.52,36.89], '金昌':[102.188043,38.520089], '泉州':[118.58,24.93], '莱西':[120.53,36.86], '日照':[119.46,35.42], '胶南':[119.97,35.88], '南通':[121.05,32.08], '拉萨':[91.11,29.97], '云浮':[112.02,22.93], '梅州':[116.1,24.55], '文登':[122.05,37.2], '上海':[121.48,31.22], '攀枝花':[101.718637,26.582347], '威海':[122.1,37.5], '承德':[117.93,40.97], '厦门':[118.1,24.46], '汕尾':[115.375279,22.786211], '潮州':[116.63,23.68], '丹东':[124.37,40.13], '太仓':[121.1,31.45], '曲靖':[103.79,25.51], '烟台':[121.39,37.52], '福州':[119.3,26.08], '瓦房店':[121.979603,39.627114], '即墨':[120.45,36.38], '抚顺':[123.97,41.97], '玉溪':[102.52,24.35], '张家口':[114.87,40.82], '阳泉':[113.57,37.85], '莱州':[119.942327,37.177017], '湖州':[120.1,30.86], '汕头':[116.69,23.39], '昆山':[120.95,31.39], '宁波':[121.56,29.86], '湛江':[110.359377,21.270708], '揭阳':[116.35,23.55], '荣成':[122.41,37.16], '连云港':[119.16,34.59], '葫芦岛':[120.836932,40.711052], '常熟':[120.74,31.64], '东莞':[113.75,23.04], '河源':[114.68,23.73], '淮安':[119.15,33.5], '泰州':[119.9,32.49], '南宁':[108.33,22.84], '营口':[122.18,40.65], '惠州':[114.4,23.09], '江阴':[120.26,31.91], '蓬莱':[120.75,37.8], '韶关':[113.62,24.84], '嘉峪关':[98.289152,39.77313], '广州':[113.23,23.16], '延安':[109.47,36.6], '太原':[112.53,37.87], '清远':[113.01,23.7], '中山':[113.38,22.52], '昆明':[102.73,25.04], '寿光':[118.73,36.86], '盘锦':[122.070714,41.119997], '长治':[113.08,36.18], '深圳':[114.07,22.62], '珠海':[113.52,22.3], '宿迁':[118.3,33.96], '咸阳':[108.72,34.36], '铜川':[109.11,35.09], '平度':[119.97,36.77], '佛山':[113.11,23.05], '海口':[110.35,20.02], '江门':[113.06,22.61], '章丘':[117.53,36.72], '肇庆':[112.44,23.05], '大连':[121.62,38.92], '临汾':[111.5,36.08], '吴江':[120.63,31.16], '石嘴山':[106.39,39.04], '沈阳':[123.38,41.8], '苏州':[120.62,31.32], '茂名':[110.88,21.68], '嘉兴':[120.76,30.77], '长春':[125.35,43.88], '胶州':[120.03336,36.264622], '银川':[106.27,38.47], '张家港':[120.555821,31.875428], '三门峡':[111.19,34.76], '锦州':[121.15,41.13], '南昌':[115.89,28.68], '柳州':[109.4,24.33], '三亚':[109.511909,18.252847], '自贡':[104.778442,29.33903], '吉林':[126.57,43.87], '阳江':[111.95,21.85], '泸州':[105.39,28.91], '西宁':[101.74,36.56], '宜宾':[104.56,29.77], '呼和浩特':[111.65,40.82], '成都':[104.06,30.67], '大同':[113.3,40.12], '镇江':[119.44,32.2], '桂林':[110.28,25.29], '张家界':[110.479191,29.117096], '宜兴':[119.82,31.36], '北海':[109.12,21.49], '西安':[108.95,34.27], '金坛':[119.56,31.74], '东营':[118.49,37.46], '牡丹江':[129.58,44.6], '遵义':[106.9,27.7], '绍兴':[120.58,30.01], '扬州':[119.42,32.39], '常州':[119.95,31.79], '潍坊':[119.1,36.62], '重庆':[106.54,29.59], '台州':[121.420757,28.656386], '南京':[118.78,32.04], '滨州':[118.03,37.36], '贵阳':[106.71,26.57], '无锡':[120.29,31.59], '本溪':[123.73,41.3], '克拉玛依':[84.77,45.59], '渭南':[109.5,34.52], '马鞍山':[118.48,31.56], '宝鸡':[107.15,34.38], '焦作':[113.21,35.24], '句容':[119.16,31.95], '北京':[116.46,39.92], '徐州':[117.2,34.26], '衡水':[115.72,37.72], '包头':[110,40.58], '绵阳':[104.73,31.48], '乌鲁木齐':[87.68,43.77], '枣庄':[117.57,34.86], '杭州':[120.19,30.26], '淄博':[118.05,36.78], '鞍山':[122.85,41.12], '溧阳':[119.48,31.43], '库尔勒':[86.06,41.68], '安阳':[114.35,36.1], '开封':[114.35,34.79], '济南':[117,36.65], '德阳':[104.37,31.13], '温州':[120.65,28.01], '九江':[115.97,29.71], '邯郸':[114.47,36.6], '临安':[119.72,30.23], '兰州':[103.73,36.03], '沧州':[116.83,38.33], '临沂':[118.35,35.05], '南充':[106.110698,30.837793], '天津':[117.2,39.13], '富阳':[119.95,30.07], '泰安':[117.13,36.18], '诸暨':[120.23,29.71], '郑州':[113.65,34.76], '哈尔滨':[126.63,45.75], '聊城':[115.97,36.45], '芜湖':[118.38,31.33], '唐山':[118.02,39.63], '平顶山':[113.29,33.75], '邢台':[114.48,37.05], '德州':[116.29,37.45], '济宁':[116.59,35.38], '荆州':[112.239741,30.335165], '宜昌':[111.3,30.7], '义乌':[120.06,29.32], '丽水':[119.92,28.45], '洛阳':[112.44,34.7], '秦皇岛':[119.57,39.95], '株洲':[113.16,27.83], '石家庄':[114.48,38.03], '莱芜':[117.67,36.19], '常德':[111.69,29.05], '保定':[115.48,38.85], '湘潭':[112.91,27.87], '金华':[119.64,29.12], '岳阳':[113.09,29.37], '长沙':[113,28.21], '衢州':[118.88,28.97], '廊坊':[116.7,39.53], '菏泽':[115.480656,35.23375], '合肥':[117.27,31.86], '武汉':[114.31,30.52], '大庆':[125.03,46.58] }; var option = { title: { text: '全国主要城市空气质量', subtext: 'data from PM25.in', sublink: 'http://www.pm25.in', left: 'center', textStyle: { color: '#fff' } }, tooltip : { trigger: 'item' }, legend: { orient: 'vertical', y: 'bottom', x:'right', data:['pm2.5'], textStyle: { color: '#fff' } }, geo: { map: '', label: { emphasis: { show: false } }, roam: true, itemStyle: { normal: { areaColor: '#323c48', borderColor: '#111' }, emphasis: { areaColor: '#2a333d' } } }, series : [ { name: 'pm2.5', type: 'scatter', coordinateSystem: 'geo', data: convertData(), symbolSize: function (val) { return val[2] / 10; }, label: { normal: { formatter: '{b}', position: 'right', show: false }, emphasis: { show: true } }, itemStyle: { normal: { color: '#ddb926' } } }, { name: 'Top 5', type: 'effectScatter', coordinateSystem: 'geo', data: convertData2(), symbolSize: function (val) { return val[2] / 10; }, showEffectOn: 'render', rippleEffect: { brushType: 'stroke' }, hoverAnimation: true, label: { normal: { formatter: '{b}', position: 'right', show: true } }, itemStyle: { normal: { color: '#f4e925', shadowBlur: 10, shadowColor: '#333' } }, zlevel: 1 } ] }; // chart.setOption(option); //将地图坐标与值结合 function convertData() { var res=[]; for(var i=0;i<data.length;i++){ var singledata=data[i]; var geoCoord=geoCoordMap[data[i].name]; if(geoCoord){ res.push({ name:data[i].name, value:geoCoord.concat(data[i].value) }); } } return res; } function convertData2() { var res=[]; var tempdata=data.sort(function (a, b) { return b.value - a.value; }).slice(0, 6); for(var i=0;i<tempdata.length;i++){ var singledata=tempdata[i]; var geoCoord=geoCoordMap[singledata.name]; if(geoCoord){ res.push({ name:data[i].name, value:geoCoord.concat(singledata.value) }); } } return res; } // window.onresize = chart.resize; var olMapExt; map.once('postrender', function (e) { if (olMapExt !== undefined) return; olMapExt = new EchartLayer(map, echarts); var container = olMapExt.getEchartsContainer(); var myChart = olMapExt.initECharts(container); window.onresize = myChart.resize; olMapExt.setOption(option, true); // var chart = echarts.init(container); //chart.setOption(option); }); }); </script> </body> </html>
转载自:https://blog.csdn.net/u011394175/article/details/81075113